Intraparenchymal Hematoma -

Who warrants surgical decompression/MIS evacuation?

May 12, 2025

Jonathan R Pace, MD, FAANS, MBA

Director of Cerebrovascular Neurosurgery

Photo courtesy of Dr. Warren Selman

What we will cover

- Intracerebral hemorrhage
 - {with surgical management}

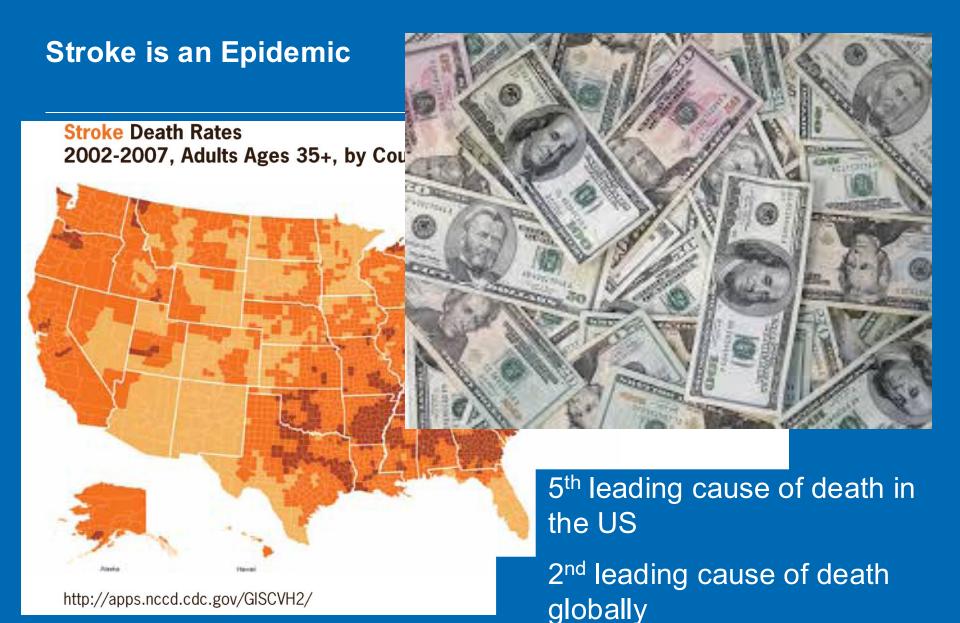
A vision for the future

Stroke Types

Ischemic

Hemorrhagic

Hemorrhagic Stroke


15% of all strokes are hemorrhagic

Many causes, most common:

HTN

Vascular (AVM/aneurysm)

CAA

Classification of Hemorrhagic Stroke

ICH score:

Size

Location

GCS

IVH

- Predicts all cause 30 day mortality

Traditional indications for surgical intervention

Size >30cc
Midline shift/ Elevated ICP
Poor neurological exam (GCS)
Herniation

Traditional indications for surgical intervention

Criticisms and concerns:

Significant Morbidity

Questionable impact on outcomes

Move to MIS

Is there a better way?

Does it lead to improved outcomes?

Less invasive evacuation of hematoma

Less disruption of normal tissue

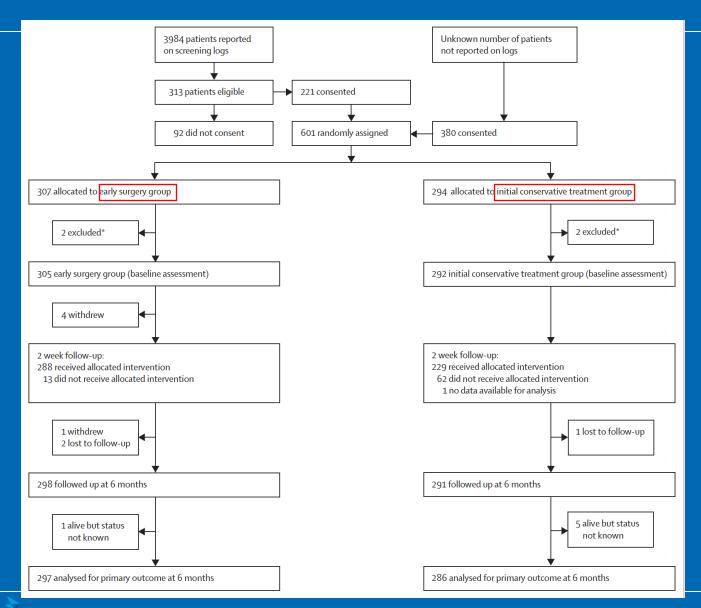
Less surgical morbidity

Evolution of MIS evacuation

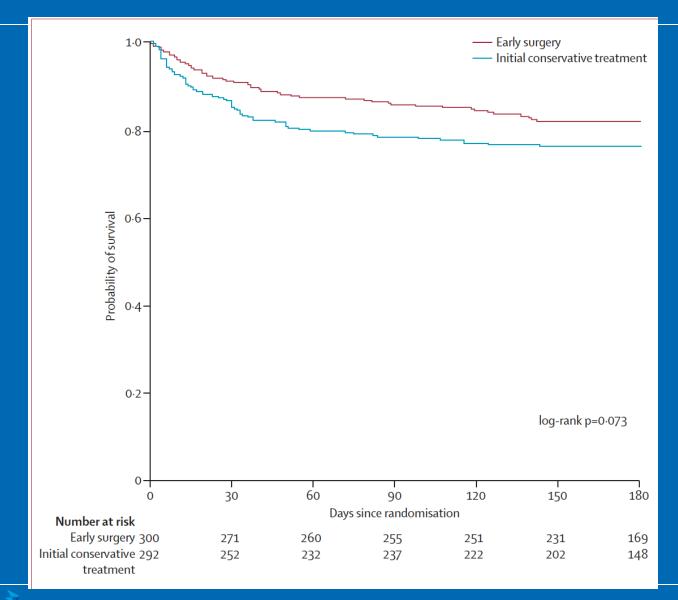
Select trial review

- STITCH II
- CLEAR III
- MISTIE III

ENRICH


STITCH II

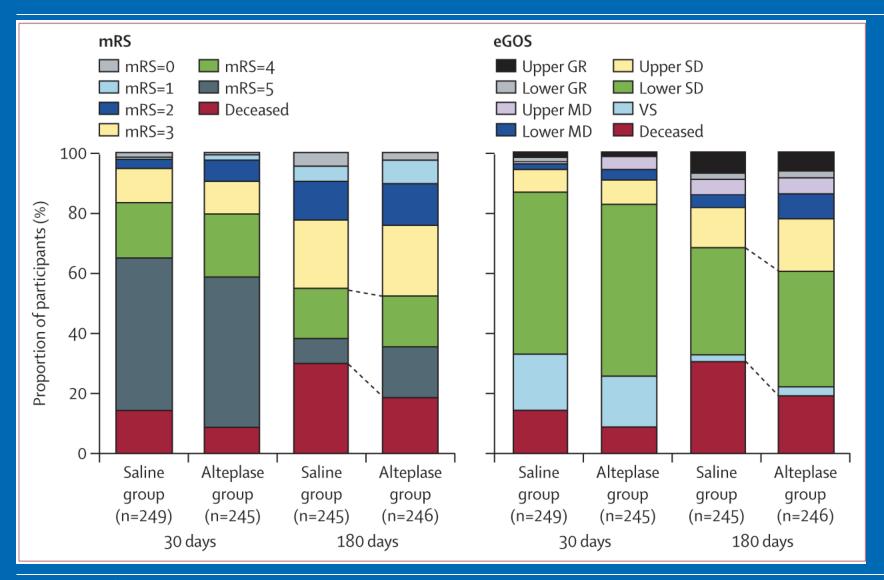
Early surgery at 12 hours vs. medical management alone


- Any surgical intervention allowed
- Significant crossover from medical arm to surgical arm (62 of 292)

Interpretation The STICH II results confirm that early surgery does not increase the rate of death or disability at 6 months and might have a small but clinically relevant survival advantage for patients with spontaneous superficial intracerebral haemorrhage without intraventricular haemorrhage.

STITCH II

STITCH II



Use of IT alteplase vs. saline

- Does demonstrate safety
- No significant change in outcomes amongst groups

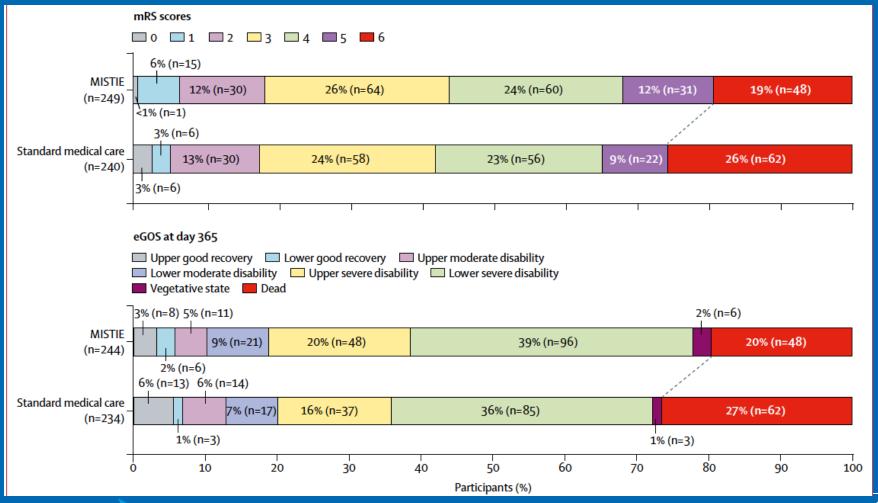
Interpretation—In patients with intraventricular haemorrhage and a routine extraventricular drain, irrigation with alteplase did not substantially improve functional outcomes at the mRS 3 cutoff compared with irrigation with saline. Protocol-based use of alteplase with extraventricular drain seems safe. Future investigation is needed to determine whether a greater frequency of complete intraventricular haemorrhage removal via alteplase produces gains in functional status.

CLEAR III

MISTIE III

Open craniotomy has not been shown to improve outcomes.

Does a minimally invasive surgery have the opportunity to improve outcomes?


Interpretation For moderate to large intracerebral haemorrhage, MISTIE did not improve the proportion of patients who achieved a good response 365 days after intracerebral haemorrhage. The procedure was safely adopted by our sample of surgeons.

MISTIE III

- MIS placement of rigid catheter 2/3 of the way into the hematoma
- Evacuate hematoma
- Placement of soft catheter into hematoma bed
- Administration of alteplase
- Aim for less than 15ml residual hematoma

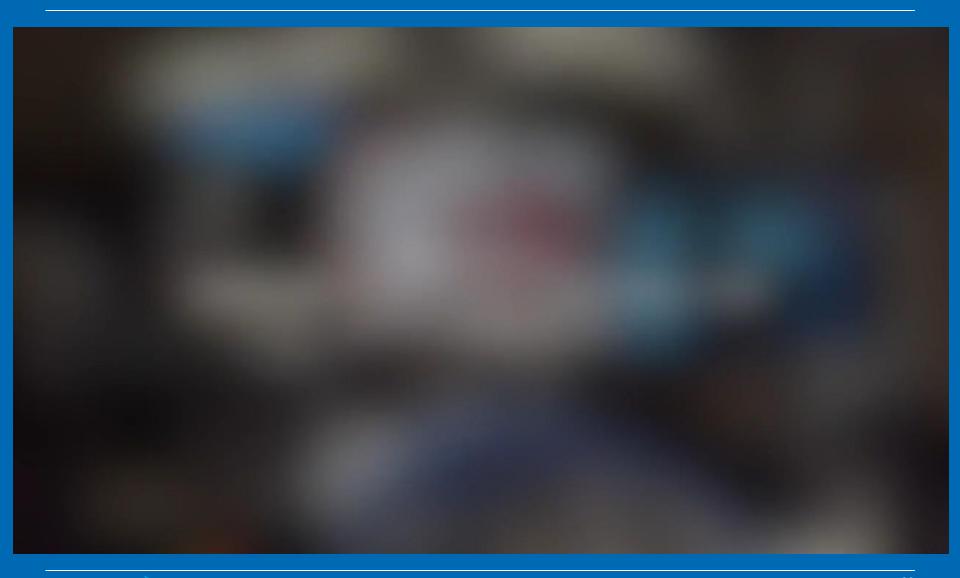
**Mean reduction in hematoma size 69%

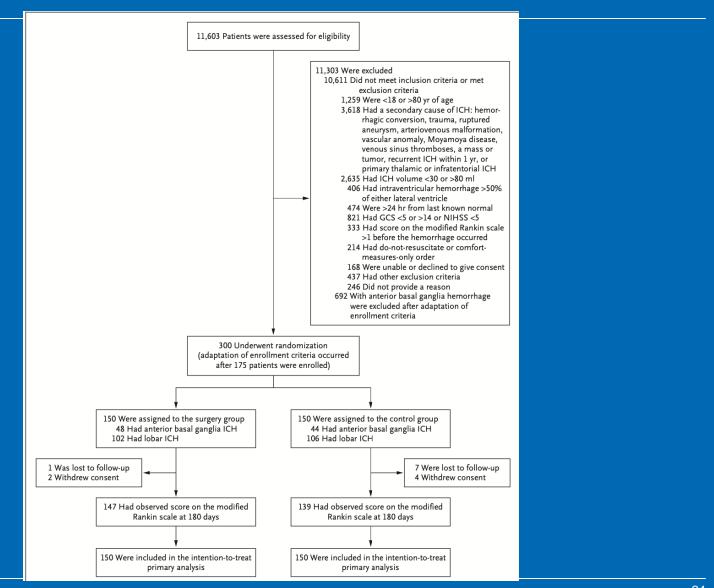
MISTIE III

Select hypotheses regarding why surgical trials have failed to show benefit

- Heterogenous patient population
- Primary brain injury resulting from hemorrhage may be difficult to recover from
- Ideal candidates and timing has been difficult to determine
- At times, significant crossover of patients from medical management to surgical groups
- Slow recruitment and difficulty determining ideal study design

The NEW ENGLAND JOURNAL of MEDICINE


ORIGINAL ARTICLE


Trial of Early Minimally Invasive Removal of Intracerebral Hemorrhage

G. Pradilla, J.J. Ratcliff, A.J. Hall, B.R. Saville, J.W. Allen, G. Paulon, A. McGlothlin,
R.J. Lewis, M. Fitzgerald, A.F. Caveney, X.T. Li, M. Bain, J. Gomes, B. Jankowitz,
G. Zenonos, B.J. Molyneaux, J. Davies, A. Siddiqui, M.R. Chicoine, S.G. Keyrouz,
J.A. Grossberg, M.V. Shah, R. Singh, B.N. Bohnstedt, M. Frankel, D.W. Wright,
and D.L. Barrow, for the ENRICH trial investigators*

- MIS vs BMT
- Hematoma volume 30-80ml
- Lobar or anterior basal ganglia
- Primary efficacy endpoint was utility weighted mRS (0-1)
- Primary safety endpoint was death at 30 days

What is MIS (Perifascicular)?

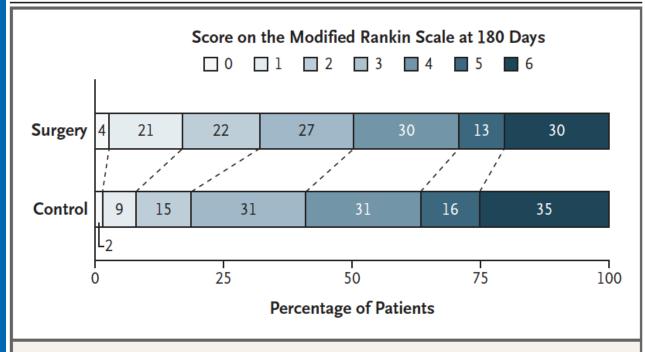


Figure 2. Distribution of Surgery Effect and Observed Scores on the Modified Rankin Scale.

The raw distribution of scores for disability on the observed modified Rankin scale at 180 days is shown according to treatment group. Scores on the modified Rankin scale range from 0 to 6, with a score of 1 or lower indicating no or minimal deficit and 6 indicating death.

Table 3. Safety End Points.*										
End Point	Surgery Group (N = 150)	Control Group (N=150)	Estimated Difference (95% Credible Interval)	Posterior Probability of Superiority						
Death by 30 days — no. (%)	14 (9.3)	27 (18.0)	-8.7 (-16.4 to -1.0)	0.987						
Postoperative rebleeding associated with neurologic deterioration — no. (%)†	5 (3.3)	NA		NA						
Change in hematoma volume — ml‡	-43.9±30.09	4.0±17.82	-47.91 (-53.59 to -42.36)	>0.999						
One or more serious adverse events — no. (%)	95 (63.3)	118 (78.7)	-15.3 (-25.4 to -5.2)	0.998						
Death in the hospital after randomization — no. (%)	7 (4.7)	19 (12.7)	-8.0 (-14.5 to -1.8)	0.994						

Table 2. Efficacy End Points.*

ICU length of stay — days**

Hospital length of stay — days**

End Point	No. of Patients		Surgery Group	Control Group	(95% Credible Interval)†	of Superiority:	
	Surgery	Control	Total				
Primary end point							
Mean score on the utility-weighted modified Rankin scale at 180 days§	147	139	286	0.458	0.374	0.084 (0.005 to 0.163)	0.981
Anterior basal ganglia hemorrhage location	40	47	87	0.340	0.381	-0.013 (-0.147 to 0.116)	
Lobar hemorrhage location	99	100	199	0.513	0.371	0.127 (0.035 to 0.219)	
Secondary end points¶							Odds Ratio (95% Cred- ible Interval)

273

273

141

141

132

132

Value for

6.9±6.8

14.9±11.2

Value for

9.7±7.6

18.1±11.9

Estimated Difference

-2.832 (-4.527 to -1.134)

-3.125 (-5.903 to -0.393)

Posterior Probability

Conclusions

- MIS surgery, based on ENRICH, shows promise
- Improved patient outcomes
- Patient safety

Thank you

Questions?